Leia o texto a seguir.
Na virada do século XVIII para o século XIX, um agrimensor norueguês, Wessel (1798), e um desconhecido matemático suíço, Argand (1806), foram, aparentemente, os primeiros a compreender que os números complexos não têm nada de “irreal”. São apenas os pontos (ou vetores) do plano que se somam através da composição de translações e que se multiplicam através da composição de rotações e dilatações (na nomenclatura atual). Mas essas iniciativas não tiveram repercussão enquanto não foram redescobertas e apadrinhadas, quase simultaneamente, por Gauss, grande autoridade daquele tempo que, já em vida, era reconhecido como um dos maiores matemáticos de todos os tempos.
(Adaptado de: CARNEIRO, J. P. A Geometria e o Ensino dos Números Complexos. Revista do Professor de Matemática. 2004. v.55. p.18.)
Assinale a alternativa que apresenta, corretamente, uma composição de rotação dos pontos P(−3,4) e Q(2,−3) representados pelos números complexos z =−3 + 4i e w = 2−3i.