Sejam m e n dois inteiros positivos primos entre si. O Teorema Chinês dos Restos afirma que, dados inteiros i e j com 0 ≤ i < m e 0 ≤ j < n, existe exatamente um inteiro a, com 0 ≤ a < m⋅n, tal que o resto da divisão de a por m é igual a i e o resto da divisão de a por n é igual a j. Por exemplo, para m = 3 e n = 7, temos que 19 é o único número que deixa restos 1 e 5 quando dividido por 3 e 7, respectivamente.

Assim, na tabela a seguir, cada número de 0 a 20 aparecerá exatamente uma vez.

Qual a soma dos números das casas destacadas?